![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3731 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 732 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 = wceq 1632 ≠ wne 2932 ⊆ wss 3715 ⊊ wpss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ne 2933 df-pss 3731 |
This theorem is referenced by: dfpss3 3835 sspss 3848 psstr 3853 npss 3859 ssnelpss 3860 pssv 4159 disj4 4169 f1imapss 6687 nnsdomo 8322 pssnn 8345 inf3lem6 8705 ssfin4 9344 fin23lem25 9358 fin23lem38 9383 isf32lem2 9388 pwfseqlem4 9696 genpcl 10042 prlem934 10067 ltaddpr 10068 chnlei 28674 cvbr2 29472 cvnbtwn2 29476 cvnbtwn3 29477 cvnbtwn4 29478 dfon2lem3 32016 dfon2lem5 32018 dfon2lem6 32019 dfon2lem7 32020 dfon2lem8 32021 dfon3 32326 lcvbr2 34830 lcvnbtwn2 34835 lcvnbtwn3 34836 |
Copyright terms: Public domain | W3C validator |