![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfpred2 | Structured version Visualization version GIF version |
Description: An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.) |
Ref | Expression |
---|---|
dfpred2.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
dfpred2 | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 5829 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | dfpred2.1 | . . . 4 ⊢ 𝑋 ∈ V | |
3 | iniseg 5642 | . . . 4 ⊢ (𝑋 ∈ V → (◡𝑅 “ {𝑋}) = {𝑦 ∣ 𝑦𝑅𝑋}) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (◡𝑅 “ {𝑋}) = {𝑦 ∣ 𝑦𝑅𝑋} |
5 | 4 | ineq2i 3942 | . 2 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
6 | 1, 5 | eqtri 2770 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 ∈ wcel 2127 {cab 2734 Vcvv 3328 ∩ cin 3702 {csn 4309 class class class wbr 4792 ◡ccnv 5253 “ cima 5257 Predcpred 5828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-xp 5260 df-cnv 5262 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 |
This theorem is referenced by: dfpred3 5839 tz6.26 5860 |
Copyright terms: Public domain | W3C validator |