MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfphi2 Structured version   Visualization version   GIF version

Theorem dfphi2 15526
Description: Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
dfphi2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dfphi2
StepHypRef Expression
1 elnn1uz2 11803 . 2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
2 phi1 15525 . . . . 5 (ϕ‘1) = 1
3 0z 11426 . . . . . 6 0 ∈ ℤ
4 hashsng 13197 . . . . . 6 (0 ∈ ℤ → (#‘{0}) = 1)
53, 4ax-mp 5 . . . . 5 (#‘{0}) = 1
6 rabid2 3148 . . . . . . 7 ({0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1} ↔ ∀𝑥 ∈ {0} (𝑥 gcd 1) = 1)
7 elsni 4227 . . . . . . . . 9 (𝑥 ∈ {0} → 𝑥 = 0)
87oveq1d 6705 . . . . . . . 8 (𝑥 ∈ {0} → (𝑥 gcd 1) = (0 gcd 1))
9 gcd1 15296 . . . . . . . . 9 (0 ∈ ℤ → (0 gcd 1) = 1)
103, 9ax-mp 5 . . . . . . . 8 (0 gcd 1) = 1
118, 10syl6eq 2701 . . . . . . 7 (𝑥 ∈ {0} → (𝑥 gcd 1) = 1)
126, 11mprgbir 2956 . . . . . 6 {0} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}
1312fveq2i 6232 . . . . 5 (#‘{0}) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
142, 5, 133eqtr2i 2679 . . . 4 (ϕ‘1) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
15 fveq2 6229 . . . 4 (𝑁 = 1 → (ϕ‘𝑁) = (ϕ‘1))
16 oveq2 6698 . . . . . . 7 (𝑁 = 1 → (0..^𝑁) = (0..^1))
17 fzo01 12590 . . . . . . 7 (0..^1) = {0}
1816, 17syl6eq 2701 . . . . . 6 (𝑁 = 1 → (0..^𝑁) = {0})
19 oveq2 6698 . . . . . . 7 (𝑁 = 1 → (𝑥 gcd 𝑁) = (𝑥 gcd 1))
2019eqeq1d 2653 . . . . . 6 (𝑁 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (𝑥 gcd 1) = 1))
2118, 20rabeqbidv 3226 . . . . 5 (𝑁 = 1 → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1})
2221fveq2d 6233 . . . 4 (𝑁 = 1 → (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (#‘{𝑥 ∈ {0} ∣ (𝑥 gcd 1) = 1}))
2314, 15, 223eqtr4a 2711 . . 3 (𝑁 = 1 → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
24 eluz2nn 11764 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
25 phival 15519 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2624, 25syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
27 fzossfz 12527 . . . . . . . . . . 11 (1..^𝑁) ⊆ (1...𝑁)
2827a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) ⊆ (1...𝑁))
29 sseqin2 3850 . . . . . . . . . 10 ((1..^𝑁) ⊆ (1...𝑁) ↔ ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3028, 29sylib 208 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
31 fzo0ss1 12537 . . . . . . . . . 10 (1..^𝑁) ⊆ (0..^𝑁)
32 sseqin2 3850 . . . . . . . . . 10 ((1..^𝑁) ⊆ (0..^𝑁) ↔ ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁))
3331, 32mpbi 220 . . . . . . . . 9 ((0..^𝑁) ∩ (1..^𝑁)) = (1..^𝑁)
3430, 33syl6eqr 2703 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((1...𝑁) ∩ (1..^𝑁)) = ((0..^𝑁) ∩ (1..^𝑁)))
3534rabeqdv 3225 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1})
36 inrab2 3933 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((1...𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
37 inrab2 3933 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ ((0..^𝑁) ∩ (1..^𝑁)) ∣ (𝑥 gcd 𝑁) = 1}
3835, 36, 373eqtr4g 2710 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)))
39 phibndlem 15522 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
40 eluzelz 11735 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
41 fzoval 12510 . . . . . . . . 9 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
4240, 41syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (1..^𝑁) = (1...(𝑁 − 1)))
4339, 42sseqtr4d 3675 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
44 df-ss 3621 . . . . . . 7 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
4543, 44sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
46 gcd0id 15287 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁))
4740, 46syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = (abs‘𝑁))
48 eluzelre 11736 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
49 eluzge2nn0 11765 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
5049nn0ge0d 11392 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 0 ≤ 𝑁)
5148, 50absidd 14205 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
5247, 51eqtrd 2685 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) = 𝑁)
53 eluz2b3 11800 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
5453simprbi 479 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
5552, 54eqnetrd 2890 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (0 gcd 𝑁) ≠ 1)
5655adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (0 gcd 𝑁) ≠ 1)
577oveq1d 6705 . . . . . . . . . . . . . 14 (𝑥 ∈ {0} → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5857, 17eleq2s 2748 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) = (0 gcd 𝑁))
5958neeq1d 2882 . . . . . . . . . . . 12 (𝑥 ∈ (0..^1) → ((𝑥 gcd 𝑁) ≠ 1 ↔ (0 gcd 𝑁) ≠ 1))
6056, 59syl5ibrcom 237 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) → (𝑥 gcd 𝑁) ≠ 1))
6160necon2bd 2839 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → ¬ 𝑥 ∈ (0..^1)))
62 simpr 476 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
63 1z 11445 . . . . . . . . . . . 12 1 ∈ ℤ
64 fzospliti 12539 . . . . . . . . . . . 12 ((𝑥 ∈ (0..^𝑁) ∧ 1 ∈ ℤ) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6562, 63, 64sylancl 695 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 ∈ (0..^1) ∨ 𝑥 ∈ (1..^𝑁)))
6665ord 391 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → (¬ 𝑥 ∈ (0..^1) → 𝑥 ∈ (1..^𝑁)))
6761, 66syld 47 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
6867ralrimiva 2995 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
69 rabss 3712 . . . . . . . 8 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ∀𝑥 ∈ (0..^𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1..^𝑁)))
7068, 69sylibr 224 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁))
71 df-ss 3621 . . . . . . 7 ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1..^𝑁) ↔ ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7270, 71sylib 208 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ({𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∩ (1..^𝑁)) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7338, 45, 723eqtr3d 2693 . . . . 5 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
7473fveq2d 6233 . . . 4 (𝑁 ∈ (ℤ‘2) → (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7526, 74eqtrd 2685 . . 3 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
7623, 75jaoi 393 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
771, 76sylbi 207 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  cin 3606  wss 3607  {csn 4210  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  cmin 10304  cn 11058  2c2 11108  cz 11415  cuz 11725  ...cfz 12364  ..^cfzo 12504  #chash 13157  abscabs 14018   gcd cgcd 15263  ϕcphi 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-phi 15518
This theorem is referenced by:  phimullem  15531  eulerth  15535  hashgcdeq  15541  odngen  18038  znunithash  19961
  Copyright terms: Public domain W3C validator