![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5 | Structured version Visualization version GIF version |
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
Ref | Expression |
---|---|
dford5 | ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson 7106 | . . 3 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
2 | ordtr 5850 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴)) |
4 | epweon 7100 | . . . 4 ⊢ E We On | |
5 | wess 5205 | . . . 4 ⊢ (𝐴 ⊆ On → ( E We On → E We 𝐴)) | |
6 | 4, 5 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ On → E We 𝐴) |
7 | df-ord 5839 | . . . . 5 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
8 | 7 | biimpri 218 | . . . 4 ⊢ ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴) |
9 | 8 | ancoms 468 | . . 3 ⊢ (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴) |
10 | 6, 9 | sylan 489 | . 2 ⊢ ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴) |
11 | 3, 10 | impbii 199 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ⊆ wss 3680 Tr wtr 4860 E cep 5132 We wwe 5176 Ord word 5835 Oncon0 5836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-tr 4861 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-ord 5839 df-on 5840 |
This theorem is referenced by: nosupno 32076 |
Copyright terms: Public domain | W3C validator |