![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3lem1 | Structured version Visualization version GIF version |
Description: Lemma for dford3 38121. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
dford3lem1 | ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 4892 | . . . . 5 ⊢ (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏)) | |
2 | 1 | cbvralv 3320 | . . . 4 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀𝑏 ∈ 𝑁 Tr 𝑏) |
3 | 2 | biimpi 206 | . . 3 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
4 | 3 | adantl 467 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
5 | trss 4895 | . . . . . 6 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁)) | |
6 | ssralv 3815 | . . . . . 6 ⊢ (𝑏 ⊆ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
7 | 5, 6 | syl6 35 | . . . . 5 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
8 | 7 | com23 86 | . . . 4 ⊢ (Tr 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
9 | 8 | imp 393 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
10 | 9 | ralrimiv 3114 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦) |
11 | r19.26 3212 | . 2 ⊢ (∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦) ↔ (∀𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
12 | 4, 10, 11 | sylanbrc 572 | 1 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 Tr wtr 4886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-uni 4575 df-tr 4887 |
This theorem is referenced by: dford3lem2 38120 dford3 38121 |
Copyright terms: Public domain | W3C validator |