MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3s Structured version   Visualization version   GIF version

Theorem dfoprab3s 7393
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 6869 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfsbc1v 3613 . . . . 5 𝑥[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
3219.41 2262 . . . 4 (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
4 sbcopeq1a 7390 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑𝜑))
54pm5.32i 565 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65exbii 1927 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
7 nfcv 2916 . . . . . . . 8 𝑦(1st𝑤)
8 nfsbc1v 3613 . . . . . . . 8 𝑦[(2nd𝑤) / 𝑦]𝜑
97, 8nfsbc 3615 . . . . . . 7 𝑦[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
10919.41 2262 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
116, 10bitr3i 267 . . . . 5 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1211exbii 1927 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
13 elvv 5329 . . . . 5 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
1413anbi1i 611 . . . 4 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
153, 12, 143bitr4i 293 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1615opabbii 4864 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
171, 16eqtri 2796 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1634  wex 1855  wcel 2148  Vcvv 3355  [wsbc 3593  cop 4332  {copab 4859   × cxp 5261  cfv 6042  {coprab 6813  1st c1st 7334  2nd c2nd 7335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3357  df-sbc 3594  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-nul 4074  df-if 4236  df-sn 4327  df-pr 4329  df-op 4333  df-uni 4586  df-br 4798  df-opab 4860  df-mpt 4877  df-id 5171  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-iota 6005  df-fun 6044  df-fv 6050  df-oprab 6816  df-1st 7336  df-2nd 7337
This theorem is referenced by:  dfoprab3  7394
  Copyright terms: Public domain W3C validator