Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem9 Structured version   Visualization version   GIF version

Theorem dfon2lem9 31820
Description: Lemma for dfon2 31821. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.)
Assertion
Ref Expression
dfon2lem9 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dfon2lem9
Dummy variables 𝑧 𝑤 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3699 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)))
2 dfon2lem8 31819 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) ∧ 𝑧𝑧))
32simprd 478 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → 𝑧𝑧)
4 intss1 4524 . . . . . . . . 9 (𝑡𝑧 𝑧𝑡)
52simpld 474 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧))
6 intex 4850 . . . . . . . . . . 11 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
7 dfon2lem3 31814 . . . . . . . . . . . . . . . . 17 ( 𝑧 ∈ V → (∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥)))
87imp 444 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (Tr 𝑧 ∧ ∀𝑥 𝑧 ¬ 𝑥𝑥))
98simprd 478 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ∀𝑥 𝑧 ¬ 𝑥𝑥)
10 untelirr 31711 . . . . . . . . . . . . . . 15 (∀𝑥 𝑧 ¬ 𝑥𝑥 → ¬ 𝑧 𝑧)
119, 10syl 17 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ¬ 𝑧 𝑧)
12 eleq1 2718 . . . . . . . . . . . . . . 15 ( 𝑧 = 𝑡 → ( 𝑧 𝑧𝑡 𝑧))
1312notbid 307 . . . . . . . . . . . . . 14 ( 𝑧 = 𝑡 → (¬ 𝑧 𝑧 ↔ ¬ 𝑡 𝑧))
1411, 13syl5ibcom 235 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
1514a1dd 50 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
168simpld 474 . . . . . . . . . . . . . . . . 17 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → Tr 𝑧)
17 trss 4794 . . . . . . . . . . . . . . . . 17 (Tr 𝑧 → (𝑡 𝑧𝑡 𝑧))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧𝑡 𝑧))
19 eqss 3651 . . . . . . . . . . . . . . . . 17 ( 𝑧 = 𝑡 ↔ ( 𝑧𝑡𝑡 𝑧))
2019simplbi2com 656 . . . . . . . . . . . . . . . 16 (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡))
2118, 20syl6 35 . . . . . . . . . . . . . . 15 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (𝑡 𝑧 → ( 𝑧𝑡 𝑧 = 𝑡)))
2221com23 86 . . . . . . . . . . . . . 14 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (𝑡 𝑧 𝑧 = 𝑡)))
23 con3 149 . . . . . . . . . . . . . 14 ((𝑡 𝑧 𝑧 = 𝑡) → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧))
2422, 23syl6 35 . . . . . . . . . . . . 13 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → (¬ 𝑧 = 𝑡 → ¬ 𝑡 𝑧)))
2524com23 86 . . . . . . . . . . . 12 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → (¬ 𝑧 = 𝑡 → ( 𝑧𝑡 → ¬ 𝑡 𝑧)))
2615, 25pm2.61d 170 . . . . . . . . . . 11 (( 𝑧 ∈ V ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
276, 26sylanb 488 . . . . . . . . . 10 ((𝑧 ≠ ∅ ∧ ∀𝑢((𝑢 𝑧 ∧ Tr 𝑢) → 𝑢 𝑧)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
285, 27syldan 486 . . . . . . . . 9 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ( 𝑧𝑡 → ¬ 𝑡 𝑧))
294, 28syl5 34 . . . . . . . 8 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝑧 → ¬ 𝑡 𝑧))
3029ralrimiv 2994 . . . . . . 7 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑡𝑧 ¬ 𝑡 𝑧)
31 eleq2 2719 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑡𝑤𝑡 𝑧))
3231notbid 307 . . . . . . . . 9 (𝑤 = 𝑧 → (¬ 𝑡𝑤 ↔ ¬ 𝑡 𝑧))
3332ralbidv 3015 . . . . . . . 8 (𝑤 = 𝑧 → (∀𝑡𝑧 ¬ 𝑡𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡 𝑧))
3433rspcev 3340 . . . . . . 7 (( 𝑧𝑧 ∧ ∀𝑡𝑧 ¬ 𝑡 𝑧) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
353, 30, 34syl2anc 694 . . . . . 6 ((𝑧 ≠ ∅ ∧ ∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
3635expcom 450 . . . . 5 (∀𝑥𝑧𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
371, 36syl6com 37 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑧𝐴 → (𝑧 ≠ ∅ → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)))
3837impd 446 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
3938alrimiv 1895 . 2 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
40 df-fr 5102 . . 3 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤))
41 epel 5061 . . . . . . . 8 (𝑡 E 𝑤𝑡𝑤)
4241notbii 309 . . . . . . 7 𝑡 E 𝑤 ↔ ¬ 𝑡𝑤)
4342ralbii 3009 . . . . . 6 (∀𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∀𝑡𝑧 ¬ 𝑡𝑤)
4443rexbii 3070 . . . . 5 (∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤 ↔ ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤)
4544imbi2i 325 . . . 4 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4645albii 1787 . . 3 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡 E 𝑤) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4740, 46bitri 264 . 2 ( E Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑤𝑧𝑡𝑧 ¬ 𝑡𝑤))
4839, 47sylibr 224 1 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1521   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607  wpss 3608  c0 3948   cint 4507   class class class wbr 4685  Tr wtr 4785   E cep 5057   Fr wfr 5099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-fr 5102  df-suc 5767
This theorem is referenced by:  dfon2  31821
  Copyright terms: Public domain W3C validator