Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem5 Structured version   Visualization version   GIF version

Theorem dfon2lem5 32018
Description: Lemma for dfon2 32023. Two sets satisfying the new definition also satisfy trichotomy with respect to . (Contributed by Scott Fenton, 25-Feb-2011.)
Hypotheses
Ref Expression
dfon2lem5.1 𝐴 ∈ V
dfon2lem5.2 𝐵 ∈ V
Assertion
Ref Expression
dfon2lem5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem dfon2lem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfon2lem5.1 . . . 4 𝐴 ∈ V
2 dfon2lem5.2 . . . 4 𝐵 ∈ V
31, 2dfon2lem4 32017 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
4 dfpss2 3834 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
5 dfpss2 3834 . . . . . . 7 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
6 eqcom 2767 . . . . . . . . 9 (𝐵 = 𝐴𝐴 = 𝐵)
76notbii 309 . . . . . . . 8 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
87anbi2i 732 . . . . . . 7 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
95, 8bitri 264 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
104, 9orbi12i 544 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
11 andir 948 . . . . 5 (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) ↔ ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ∨ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵)))
1210, 11bitr4i 267 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵))
13 orcom 401 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
14 dfon2lem3 32016 . . . . . . . . 9 (𝐵 ∈ V → (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧)))
152, 14ax-mp 5 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧))
1615simpld 477 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → Tr 𝐵)
17 psseq1 3836 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
18 treq 4910 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (Tr 𝑥 ↔ Tr 𝐵))
1917, 18anbi12d 749 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝑥𝐴 ∧ Tr 𝑥) ↔ (𝐵𝐴 ∧ Tr 𝐵)))
20 eleq1 2827 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2119, 20imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝐵 → (((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ↔ ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴)))
222, 21spcv 3439 . . . . . . . . 9 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → ((𝐵𝐴 ∧ Tr 𝐵) → 𝐵𝐴))
2322expcomd 453 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐵 → (𝐵𝐴𝐵𝐴)))
2423imp 444 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ Tr 𝐵) → (𝐵𝐴𝐵𝐴))
2516, 24sylan2 492 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐵𝐴𝐵𝐴))
26 dfon2lem3 32016 . . . . . . . . 9 (𝐴 ∈ V → (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧)))
271, 26ax-mp 5 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧))
2827simpld 477 . . . . . . 7 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → Tr 𝐴)
29 psseq1 3836 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
30 treq 4910 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
3129, 30anbi12d 749 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦𝐵 ∧ Tr 𝑦) ↔ (𝐴𝐵 ∧ Tr 𝐴)))
32 eleq1 2827 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
3331, 32imbi12d 333 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) ↔ ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵)))
341, 33spcv 3439 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → ((𝐴𝐵 ∧ Tr 𝐴) → 𝐴𝐵))
3534expcomd 453 . . . . . . 7 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐴 → (𝐴𝐵𝐴𝐵)))
3628, 35mpan9 487 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴𝐵))
3725, 36orim12d 919 . . . . 5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐵𝐴𝐴𝐵) → (𝐵𝐴𝐴𝐵)))
3813, 37syl5bi 232 . . . 4 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵𝐵𝐴) → (𝐵𝐴𝐴𝐵)))
3912, 38syl5bir 233 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴 = 𝐵) → (𝐵𝐴𝐴𝐵)))
403, 39mpand 713 . 2 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
41 3orrot 1077 . . 3 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (𝐴 = 𝐵𝐵𝐴𝐴𝐵))
42 3orass 1075 . . . 4 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)))
43 df-or 384 . . . 4 ((𝐴 = 𝐵 ∨ (𝐵𝐴𝐴𝐵)) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4442, 43bitri 264 . . 3 ((𝐴 = 𝐵𝐵𝐴𝐴𝐵) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4541, 44bitri 264 . 2 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ (¬ 𝐴 = 𝐵 → (𝐵𝐴𝐴𝐵)))
4640, 45sylibr 224 1 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1071  wal 1630   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  wss 3715  wpss 3716  Tr wtr 4904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-pw 4304  df-sn 4322  df-pr 4324  df-uni 4589  df-iun 4674  df-tr 4905  df-suc 5890
This theorem is referenced by:  dfon2lem6  32019  dfon2  32023
  Copyright terms: Public domain W3C validator