![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem2 | Structured version Visualization version GIF version |
Description: Lemma for dfon2 31821. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
dfon2lem2 | ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓) → 𝑥 ⊆ 𝐴) | |
2 | 1 | ss2abi 3707 | . . 3 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
3 | df-pw 4193 | . . 3 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
4 | 2, 3 | sseqtr4i 3671 | . 2 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝒫 𝐴 |
5 | sspwuni 4643 | . 2 ⊢ ({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴) | |
6 | 4, 5 | mpbi 220 | 1 ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1054 {cab 2637 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-in 3614 df-ss 3621 df-pw 4193 df-uni 4469 |
This theorem is referenced by: dfon2lem3 31814 dfon2lem7 31818 |
Copyright terms: Public domain | W3C validator |