![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem1 | Structured version Visualization version GIF version |
Description: Lemma for dfon2 31821. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
dfon2lem1 | ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | truni 4800 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)}Tr 𝑦 → Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)}) | |
2 | nfsbc1v 3488 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑥Tr 𝑦 | |
4 | nfsbc1v 3488 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜓 | |
5 | 2, 3, 4 | nf3an 1871 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓) |
6 | vex 3234 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | sbceq1a 3479 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | treq 4791 | . . . . 5 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
9 | sbceq1a 3479 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑥]𝜓)) | |
10 | 7, 8, 9 | 3anbi123d 1439 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓))) |
11 | 5, 6, 10 | elabf 3381 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓)) |
12 | 11 | simp2bi 1097 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} → Tr 𝑦) |
13 | 1, 12 | mprg 2955 | 1 ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1054 ∈ wcel 2030 {cab 2637 [wsbc 3468 ∪ cuni 4468 Tr wtr 4785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-sbc 3469 df-in 3614 df-ss 3621 df-uni 4469 df-iun 4554 df-tr 4786 |
This theorem is referenced by: dfon2lem3 31814 dfon2lem7 31818 |
Copyright terms: Public domain | W3C validator |