Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem1 Structured version   Visualization version   GIF version

Theorem dfon2lem1 31812
Description: Lemma for dfon2 31821. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}

Proof of Theorem dfon2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 truni 4800 . 2 (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}Tr 𝑦 → Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)})
2 nfsbc1v 3488 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 nfv 1883 . . . . 5 𝑥Tr 𝑦
4 nfsbc1v 3488 . . . . 5 𝑥[𝑦 / 𝑥]𝜓
52, 3, 4nf3an 1871 . . . 4 𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)
6 vex 3234 . . . 4 𝑦 ∈ V
7 sbceq1a 3479 . . . . 5 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
8 treq 4791 . . . . 5 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
9 sbceq1a 3479 . . . . 5 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
107, 8, 93anbi123d 1439 . . . 4 (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)))
115, 6, 10elabf 3381 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓))
1211simp2bi 1097 . 2 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} → Tr 𝑦)
131, 12mprg 2955 1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}
Colors of variables: wff setvar class
Syntax hints:  w3a 1054  wcel 2030  {cab 2637  [wsbc 3468   cuni 4468  Tr wtr 4785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-sbc 3469  df-in 3614  df-ss 3621  df-uni 4469  df-iun 4554  df-tr 4786
This theorem is referenced by:  dfon2lem3  31814  dfon2lem7  31818
  Copyright terms: Public domain W3C validator