Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2 Structured version   Visualization version   GIF version

Theorem dfon2 31821
Description: On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers," American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
dfon2 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfon2
Dummy variables 𝑧 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-on 5765 . 2 On = {𝑥 ∣ Ord 𝑥}
2 tz7.7 5787 . . . . . . . . 9 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
3 df-pss 3623 . . . . . . . . 9 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
42, 3syl6bbr 278 . . . . . . . 8 ((Ord 𝑥 ∧ Tr 𝑦) → (𝑦𝑥𝑦𝑥))
54exbiri 651 . . . . . . 7 (Ord 𝑥 → (Tr 𝑦 → (𝑦𝑥𝑦𝑥)))
65com23 86 . . . . . 6 (Ord 𝑥 → (𝑦𝑥 → (Tr 𝑦𝑦𝑥)))
76impd 446 . . . . 5 (Ord 𝑥 → ((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
87alrimiv 1895 . . . 4 (Ord 𝑥 → ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
9 vex 3234 . . . . . . 7 𝑥 ∈ V
10 dfon2lem3 31814 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
119, 10ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
1211simpld 474 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
139dfon2lem7 31818 . . . . . . . 8 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝑥 → ∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡)))
1413ralrimiv 2994 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡))
15 dfon2lem9 31820 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → E Fr 𝑥)
16 psseq2 3728 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1716anbi1d 741 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑧 ∧ Tr 𝑢)))
18 elequ2 2044 . . . . . . . . . . . . . . 15 (𝑡 = 𝑧 → (𝑢𝑡𝑢𝑧))
1917, 18imbi12d 333 . . . . . . . . . . . . . 14 (𝑡 = 𝑧 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
2019albidv 1889 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧)))
21 psseq1 3727 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
22 treq 4791 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑣 → (Tr 𝑢 ↔ Tr 𝑣))
2321, 22anbi12d 747 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → ((𝑢𝑧 ∧ Tr 𝑢) ↔ (𝑣𝑧 ∧ Tr 𝑣)))
24 elequ1 2037 . . . . . . . . . . . . . . 15 (𝑢 = 𝑣 → (𝑢𝑧𝑣𝑧))
2523, 24imbi12d 333 . . . . . . . . . . . . . 14 (𝑢 = 𝑣 → (((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2625cbvalv 2309 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑧 ∧ Tr 𝑢) → 𝑢𝑧) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧))
2720, 26syl6bb 276 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
2827rspccv 3337 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑧𝑥 → ∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧)))
29 psseq2 3728 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3029anbi1d 741 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → ((𝑢𝑡 ∧ Tr 𝑢) ↔ (𝑢𝑤 ∧ Tr 𝑢)))
31 elequ2 2044 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑢𝑡𝑢𝑤))
3230, 31imbi12d 333 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
3332albidv 1889 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤)))
34 psseq1 3727 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
35 treq 4791 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑦 → (Tr 𝑢 ↔ Tr 𝑦))
3634, 35anbi12d 747 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → ((𝑢𝑤 ∧ Tr 𝑢) ↔ (𝑦𝑤 ∧ Tr 𝑦)))
37 elequ1 2037 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦 → (𝑢𝑤𝑦𝑤))
3836, 37imbi12d 333 . . . . . . . . . . . . . 14 (𝑢 = 𝑦 → (((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
3938cbvalv 2309 . . . . . . . . . . . . 13 (∀𝑢((𝑢𝑤 ∧ Tr 𝑢) → 𝑢𝑤) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))
4033, 39syl6bb 276 . . . . . . . . . . . 12 (𝑡 = 𝑤 → (∀𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) ↔ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4140rspccv 3337 . . . . . . . . . . 11 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → (𝑤𝑥 → ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)))
4228, 41anim12d 585 . . . . . . . . . 10 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤))))
43 vex 3234 . . . . . . . . . . 11 𝑧 ∈ V
44 vex 3234 . . . . . . . . . . 11 𝑤 ∈ V
4543, 44dfon2lem5 31816 . . . . . . . . . 10 ((∀𝑣((𝑣𝑧 ∧ Tr 𝑣) → 𝑣𝑧) ∧ ∀𝑦((𝑦𝑤 ∧ Tr 𝑦) → 𝑦𝑤)) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4642, 45syl6 35 . . . . . . . . 9 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ((𝑧𝑥𝑤𝑥) → (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4746ralrimivv 2999 . . . . . . . 8 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
4815, 47jca 553 . . . . . . 7 (∀𝑡𝑥𝑢((𝑢𝑡 ∧ Tr 𝑢) → 𝑢𝑡) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
4914, 48syl 17 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
50 dfwe2 7023 . . . . . . 7 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)))
51 epel 5061 . . . . . . . . . 10 (𝑧 E 𝑤𝑧𝑤)
52 biid 251 . . . . . . . . . 10 (𝑧 = 𝑤𝑧 = 𝑤)
53 epel 5061 . . . . . . . . . 10 (𝑤 E 𝑧𝑤𝑧)
5451, 52, 533orbi123i 1271 . . . . . . . . 9 ((𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
55542ralbii 3010 . . . . . . . 8 (∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧) ↔ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧))
5655anbi2i 730 . . . . . . 7 (( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧 E 𝑤𝑧 = 𝑤𝑤 E 𝑧)) ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5750, 56bitri 264 . . . . . 6 ( E We 𝑥 ↔ ( E Fr 𝑥 ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤𝑧 = 𝑤𝑤𝑧)))
5849, 57sylibr 224 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → E We 𝑥)
59 df-ord 5764 . . . . 5 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
6012, 58, 59sylanbrc 699 . . . 4 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Ord 𝑥)
618, 60impbii 199 . . 3 (Ord 𝑥 ↔ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥))
6261abbii 2768 . 2 {𝑥 ∣ Ord 𝑥} = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
631, 62eqtri 2673 1 On = {𝑥 ∣ ∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3o 1053  wal 1521   = wceq 1523  wcel 2030  {cab 2637  wne 2823  wral 2941  Vcvv 3231  wss 3607  wpss 3608   class class class wbr 4685  Tr wtr 4785   E cep 5057   Fr wfr 5099   We wwe 5101  Ord word 5760  Oncon0 5761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-suc 5767
This theorem is referenced by:  dfon3  32124
  Copyright terms: Public domain W3C validator