![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version |
Description: A quantifier-free definition of ω that does not depend on ax-inf 8699. (Note: label was changed from dfom5 8711 to dfom5b 32356 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3354 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4617 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
3 | vex 3354 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ellimits 32354 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
5 | 4 | imbi1i 338 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
6 | 5 | albii 1895 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
7 | 2, 6 | bitr2i 265 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
8 | 7 | anbi2i 609 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
9 | elom 7215 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
10 | elin 3947 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
11 | 8, 9, 10 | 3bitr4i 292 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
12 | 11 | eqriv 2768 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∀wal 1629 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ∩ cint 4611 Oncon0 5866 Lim wlim 5867 ωcom 7212 Limits climits 32280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-symdif 3993 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-int 4612 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ord 5869 df-on 5870 df-lim 5871 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-om 7213 df-1st 7315 df-2nd 7316 df-txp 32298 df-bigcup 32302 df-fix 32303 df-limits 32304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |