Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfodd6 Structured version   Visualization version   GIF version

Theorem dfodd6 42078
Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfodd6 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Distinct variable group:   𝑧,𝑖

Proof of Theorem dfodd6
StepHypRef Expression
1 dfodd2 42077 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ}
2 simpr 471 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) / 2) ∈ ℤ)
3 oveq2 6801 . . . . . . . . . 10 (𝑖 = ((𝑧 − 1) / 2) → (2 · 𝑖) = (2 · ((𝑧 − 1) / 2)))
4 peano2zm 11622 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℤ)
54zcnd 11685 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → (𝑧 − 1) ∈ ℂ)
6 2cnd 11295 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ∈ ℂ)
7 2ne0 11315 . . . . . . . . . . . . . 14 2 ≠ 0
87a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 2 ≠ 0)
95, 6, 83jca 1122 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
109adantr 466 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0))
11 divcan2 10895 . . . . . . . . . . 11 (((𝑧 − 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
1210, 11syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → (2 · ((𝑧 − 1) / 2)) = (𝑧 − 1))
133, 12sylan9eqr 2827 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (2 · 𝑖) = (𝑧 − 1))
1413oveq1d 6808 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = ((𝑧 − 1) + 1))
15 zcn 11584 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
16 npcan1 10657 . . . . . . . . . . 11 (𝑧 ∈ ℂ → ((𝑧 − 1) + 1) = 𝑧)
1715, 16syl 17 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 − 1) + 1) = 𝑧)
1817adantr 466 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ((𝑧 − 1) + 1) = 𝑧)
1918adantr 466 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((𝑧 − 1) + 1) = 𝑧)
2014, 19eqtrd 2805 . . . . . . 7 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → ((2 · 𝑖) + 1) = 𝑧)
2120eqeq2d 2781 . . . . . 6 (((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) ∧ 𝑖 = ((𝑧 − 1) / 2)) → (𝑧 = ((2 · 𝑖) + 1) ↔ 𝑧 = 𝑧))
22 eqidd 2772 . . . . . 6 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → 𝑧 = 𝑧)
232, 21, 22rspcedvd 3467 . . . . 5 ((𝑧 ∈ ℤ ∧ ((𝑧 − 1) / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1))
2423ex 397 . . . 4 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
25 oveq1 6800 . . . . . . . . . 10 (𝑧 = ((2 · 𝑖) + 1) → (𝑧 − 1) = (((2 · 𝑖) + 1) − 1))
26 zcn 11584 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 mulcl 10222 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
286, 26, 27syl2an 583 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) ∈ ℂ)
29 pncan1 10656 . . . . . . . . . . 11 ((2 · 𝑖) ∈ ℂ → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3028, 29syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (((2 · 𝑖) + 1) − 1) = (2 · 𝑖))
3125, 30sylan9eqr 2827 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → (𝑧 − 1) = (2 · 𝑖))
3231oveq1d 6808 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = ((2 · 𝑖) / 2))
3326adantl 467 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
34 2cnd 11295 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
357a1i 11 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0)
3633, 34, 35divcan3d 11008 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖)
3736adantr 466 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((2 · 𝑖) / 2) = 𝑖)
3832, 37eqtrd 2805 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) = 𝑖)
39 simpr 471 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
4039adantr 466 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → 𝑖 ∈ ℤ)
4138, 40eqeltrd 2850 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = ((2 · 𝑖) + 1)) → ((𝑧 − 1) / 2) ∈ ℤ)
4241ex 397 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4342rexlimdva 3179 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1) → ((𝑧 − 1) / 2) ∈ ℤ))
4424, 43impbid 202 . . 3 (𝑧 ∈ ℤ → (((𝑧 − 1) / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)))
4544rabbiia 3334 . 2 {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
461, 45eqtri 2793 1 Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)}
Colors of variables: wff setvar class
Syntax hints:  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  {crab 3065  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468   / cdiv 10886  2c2 11272  cz 11579   Odd codd 42066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-odd 42068
This theorem is referenced by:  dfodd3  42091  odd2np1ALTV  42113  opoeALTV  42122  opeoALTV  42123
  Copyright terms: Public domain W3C validator