![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnul2 | Structured version Visualization version GIF version |
Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) |
Ref | Expression |
---|---|
dfnul2 | ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nul 4062 | . . . 4 ⊢ ∅ = (V ∖ V) | |
2 | 1 | eleq2i 2841 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ 𝑥 ∈ (V ∖ V)) |
3 | eldif 3731 | . . 3 ⊢ (𝑥 ∈ (V ∖ V) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)) | |
4 | eqid 2770 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
5 | pm3.24 389 | . . . . 5 ⊢ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) | |
6 | 4, 5 | 2th 254 | . . . 4 ⊢ (𝑥 = 𝑥 ↔ ¬ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ V)) |
7 | 6 | con2bii 346 | . . 3 ⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ V) ↔ ¬ 𝑥 = 𝑥) |
8 | 2, 3, 7 | 3bitri 286 | . 2 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
9 | 8 | abbi2i 2886 | 1 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {cab 2756 Vcvv 3349 ∖ cdif 3718 ∅c0 4061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-dif 3724 df-nul 4062 |
This theorem is referenced by: dfnul3 4064 iotanul 6009 avril1 27655 |
Copyright terms: Public domain | W3C validator |