MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Structured version   Visualization version   GIF version

Theorem dfnn3 11072
Description: Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3 ℕ = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2719 . . . 4 (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧))
2 eleq2 2719 . . . . 5 (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧))
32raleqbi1dv 3176 . . . 4 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧))
41, 3anbi12d 747 . . 3 (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)))
5 dfnn2 11071 . . . . 5 ℕ = {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)}
65eqeq2i 2663 . . . 4 (𝑥 = ℕ ↔ 𝑥 = {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)})
7 eleq2 2719 . . . . 5 (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ))
8 eleq2 2719 . . . . . 6 (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ))
98raleqbi1dv 3176 . . . . 5 (𝑥 = ℕ → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
107, 9anbi12d 747 . . . 4 (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)))
116, 10sylbir 225 . . 3 (𝑥 = {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)} → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)))
12 nnssre 11062 . . . . 5 ℕ ⊆ ℝ
135, 12eqsstr3i 3669 . . . 4 {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ
14 1nn 11069 . . . . 5 1 ∈ ℕ
15 peano2nn 11070 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
1615rgen 2951 . . . . 5 𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ
1714, 16pm3.2i 470 . . . 4 (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)
1813, 17pm3.2i 470 . . 3 ( {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ ∧ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
194, 11, 18intabs 4855 . 2 {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥))} = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
20 3anass 1059 . . . 4 ((𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)))
2120abbii 2768 . . 3 {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥))}
2221inteqi 4511 . 2 {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥))}
23 dfnn2 11071 . 2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2419, 22, 233eqtr4ri 2684 1 ℕ = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wss 3607   cint 4507  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977  cn 11058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-nn 11059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator