![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfnbgr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
nbgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbgrval.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
dfnbgr2 | ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrval.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | nbgrval.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 26349 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒}) |
4 | vex 3307 | . . . . . 6 ⊢ 𝑛 ∈ V | |
5 | prssg 4458 | . . . . . 6 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ V) → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) | |
6 | 4, 5 | mpan2 709 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
7 | 6 | bicomd 213 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
8 | 7 | rexbidv 3154 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
9 | 8 | rabbidv 3293 | . 2 ⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
10 | 3, 9 | eqtrd 2758 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∃wrex 3015 {crab 3018 Vcvv 3304 ∖ cdif 3677 ⊆ wss 3680 {csn 4285 {cpr 4287 ‘cfv 6001 (class class class)co 6765 Vtxcvtx 25994 Edgcedg 26059 NeighbVtx cnbgr 26344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-nbgr 26345 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |