![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dflinc2 | Structured version Visualization version GIF version |
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
Ref | Expression |
---|---|
dflinc2 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-linc 42723 | . 2 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) | |
2 | elmapfn 8048 | . . . . . . . 8 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) → 𝑠 Fn 𝑣) | |
3 | 2 | adantr 472 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣) |
4 | fnresi 6169 | . . . . . . . 8 ⊢ ( I ↾ 𝑣) Fn 𝑣 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣) |
6 | vex 3343 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V) |
8 | inidm 3965 | . . . . . . 7 ⊢ (𝑣 ∩ 𝑣) = 𝑣 | |
9 | eqidd 2761 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (𝑠‘𝑖) = (𝑠‘𝑖)) | |
10 | fvresi 6604 | . . . . . . . 8 ⊢ (𝑖 ∈ 𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖) | |
11 | 10 | adantl 473 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖) |
12 | 3, 5, 7, 7, 8, 9, 11 | offval 7070 | . . . . . 6 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) |
13 | 12 | eqcomd 2766 | . . . . 5 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)) = (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))) |
14 | 13 | oveq2d 6830 | . . . 4 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) = (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
15 | 14 | mpt2eq3ia 6886 | . . 3 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
16 | 15 | mpteq2i 4893 | . 2 ⊢ (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
17 | 1, 16 | eqtri 2782 | 1 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 𝒫 cpw 4302 ↦ cmpt 4881 I cid 5173 ↾ cres 5268 Fn wfn 6044 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 ∘𝑓 cof 7061 ↑𝑚 cmap 8025 Basecbs 16079 Scalarcsca 16166 ·𝑠 cvsca 16167 Σg cgsu 16323 linC clinc 42721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-1st 7334 df-2nd 7335 df-map 8027 df-linc 42723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |