MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim2 Structured version   Visualization version   GIF version

Theorem dflim2 5923
Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-lim 5870 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
2 ord0eln0 5921 . . . . 5 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
32anbi1d 615 . . . 4 (Ord 𝐴 → ((∅ ∈ 𝐴𝐴 = 𝐴) ↔ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
43pm5.32i 564 . . 3 ((Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
5 3anass 1080 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)))
6 3anass 1080 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
74, 5, 63bitr4i 292 . 2 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
81, 7bitr4i 267 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  c0 4063   cuni 4575  Ord word 5864  Lim wlim 5866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-lim 5870
This theorem is referenced by:  nlim0  5925  dflim4  7199
  Copyright terms: Public domain W3C validator