![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfle2 | Structured version Visualization version GIF version |
Description: Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
dfle2 | ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel 10292 | . 2 ⊢ Rel ≤ | |
2 | ltrelxr 10289 | . . . 4 ⊢ < ⊆ (ℝ* × ℝ*) | |
3 | f1oi 6333 | . . . . 5 ⊢ ( I ↾ ℝ*):ℝ*–1-1-onto→ℝ* | |
4 | f1of 6296 | . . . . 5 ⊢ (( I ↾ ℝ*):ℝ*–1-1-onto→ℝ* → ( I ↾ ℝ*):ℝ*⟶ℝ*) | |
5 | fssxp 6219 | . . . . 5 ⊢ (( I ↾ ℝ*):ℝ*⟶ℝ* → ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*)) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ( I ↾ ℝ*) ⊆ (ℝ* × ℝ*) |
7 | 2, 6 | unssi 3929 | . . 3 ⊢ ( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) |
8 | relxp 5281 | . . 3 ⊢ Rel (ℝ* × ℝ*) | |
9 | relss 5361 | . . 3 ⊢ (( < ∪ ( I ↾ ℝ*)) ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ( < ∪ ( I ↾ ℝ*)))) | |
10 | 7, 8, 9 | mp2 9 | . 2 ⊢ Rel ( < ∪ ( I ↾ ℝ*)) |
11 | lerelxr 10291 | . . . 4 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
12 | 11 | brel 5323 | . . 3 ⊢ (𝑥 ≤ 𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
13 | 7 | brel 5323 | . . 3 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 → (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*)) |
14 | xrleloe 12168 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) | |
15 | resieq 5563 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥( I ↾ ℝ*)𝑦 ↔ 𝑥 = 𝑦)) | |
16 | 15 | orbi2d 740 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → ((𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
17 | 14, 16 | bitr4d 271 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦))) |
18 | brun 4853 | . . . 4 ⊢ (𝑥( < ∪ ( I ↾ ℝ*))𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥( I ↾ ℝ*)𝑦)) | |
19 | 17, 18 | syl6bbr 278 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦)) |
20 | 12, 13, 19 | pm5.21nii 367 | . 2 ⊢ (𝑥 ≤ 𝑦 ↔ 𝑥( < ∪ ( I ↾ ℝ*))𝑦) |
21 | 1, 10, 20 | eqbrriv 5370 | 1 ⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∪ cun 3711 ⊆ wss 3713 class class class wbr 4802 I cid 5171 × cxp 5262 ↾ cres 5266 Rel wrel 5269 ⟶wf 6043 –1-1-onto→wf1o 6046 ℝ*cxr 10263 < clt 10264 ≤ cle 10265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-pre-lttri 10200 ax-pre-lttrn 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-po 5185 df-so 5186 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |