MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun3g Structured version   Visualization version   GIF version

Theorem dfiun3g 5515
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))

Proof of Theorem dfiun3g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 4687 . 2 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 eqid 2771 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 5508 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
43unieqi 4584 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4syl6eqr 2823 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  {cab 2757  wral 3061  wrex 3062   cuni 4575   ciun 4655  cmpt 4864  ran crn 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-cnv 5258  df-dm 5260  df-rn 5261
This theorem is referenced by:  dfiun3  5517  iunon  7593  onoviun  7597  gruiun  9827  tgiun  21004  acunirnmpt2f  29801  locfinreflem  30247  carsgclctunlem2  30721  pmeasadd  30727  saliuncl  41056  salexct3  41074  salgensscntex  41076  meadjiun  41197  omeiunle  41248  ovolval5lem2  41384
  Copyright terms: Public domain W3C validator