MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 4705
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 3080 . . . . . 6 𝑥𝑥𝐴 𝐵𝐶
2 rsp 3068 . . . . . . . 8 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
3 clel3g 3481 . . . . . . . 8 (𝐵𝐶 → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
42, 3syl6 35 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴 → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦))))
54imp 444 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
61, 5rexbida 3186 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦)))
7 rexcom4 3366 . . . . 5 (∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦))
86, 7syl6bb 276 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦)))
9 r19.41v 3228 . . . . . 6 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
109exbii 1923 . . . . 5 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
11 exancom 1936 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
1210, 11bitri 264 . . . 4 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
138, 12syl6bb 276 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵)))
14 eliun 4677 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
15 eluniab 4600 . . 3 (𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
1613, 14, 153bitr4g 303 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 𝑥𝐴 𝐵𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
1716eqrdv 2759 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2140  {cab 2747  wral 3051  wrex 3052   cuni 4589   ciun 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-v 3343  df-uni 4590  df-iun 4675
This theorem is referenced by:  dfiun2  4707  dfiun3g  5534  abnexg  7131  iunexg  7310  uniqs  7977  ac6num  9514  iunopn  20926  pnrmopn  21370  cncmp  21418  ptcmplem3  22080  iunmbl  23542  voliun  23543  sigaclcuni  30512  sigaclcu2  30514  sigaclci  30526  measvunilem  30606  meascnbl  30613  carsgclctunlem3  30713  uniqsALTV  34444
  Copyright terms: Public domain W3C validator