![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiun2g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3080 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | rsp 3068 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | |
3 | clel3g 3481 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐶 → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) | |
4 | 2, 3 | syl6 35 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑥 ∈ 𝐴 → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)))) |
5 | 4 | imp 444 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
6 | 1, 5 | rexbida 3186 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
7 | rexcom4 3366 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
8 | 6, 7 | syl6bb 276 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦))) |
9 | r19.41v 3228 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) | |
10 | 9 | exbii 1923 | . . . . 5 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦)) |
11 | exancom 1936 | . . . . 5 ⊢ (∃𝑦(∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
12 | 10, 11 | bitri 264 | . . . 4 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 = 𝐵 ∧ 𝑧 ∈ 𝑦) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
13 | 8, 12 | syl6bb 276 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵))) |
14 | eliun 4677 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
15 | eluniab 4600 | . . 3 ⊢ (𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) | |
16 | 13, 14, 15 | 3bitr4g 303 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵})) |
17 | 16 | eqrdv 2759 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2140 {cab 2747 ∀wral 3051 ∃wrex 3052 ∪ cuni 4589 ∪ ciun 4673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-v 3343 df-uni 4590 df-iun 4675 |
This theorem is referenced by: dfiun2 4707 dfiun3g 5534 abnexg 7131 iunexg 7310 uniqs 7977 ac6num 9514 iunopn 20926 pnrmopn 21370 cncmp 21418 ptcmplem3 22080 iunmbl 23542 voliun 23543 sigaclcuni 30512 sigaclcu2 30514 sigaclci 30526 measvunilem 30606 meascnbl 30613 carsgclctunlem3 30713 uniqsALTV 34444 |
Copyright terms: Public domain | W3C validator |