![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiun2 | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
dfiun2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfiun2 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4584 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
4 | 1, 3 | mprg 2955 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 ∪ cuni 4468 ∪ ciun 4552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-uni 4469 df-iun 4554 |
This theorem is referenced by: fniunfv 6545 funcnvuni 7161 fun11iun 7168 tfrlem8 7525 rdglim2a 7574 rankuni 8764 cardiun 8846 kmlem11 9020 cfslb2n 9128 enfin2i 9181 pwcfsdom 9443 rankcf 9637 tskuni 9643 discmp 21249 cmpsublem 21250 cmpsub 21251 |
Copyright terms: Public domain | W3C validator |