MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota2 Structured version   Visualization version   GIF version

Theorem dfiota2 5890
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 5889 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 df-sn 4211 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
32eqeq2i 2663 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
4 abbi 2766 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
53, 4bitr4i 267 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
65abbii 2768 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
76unieqi 4477 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
81, 7eqtri 2673 1 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1521   = wceq 1523  {cab 2637  {csn 4210   cuni 4468  cio 5887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-sn 4211  df-uni 4469  df-iota 5889
This theorem is referenced by:  nfiota1  5891  nfiotad  5892  cbviota  5894  sb8iota  5896  iotaval  5900  iotanul  5904  fv2  6224
  Copyright terms: Public domain W3C validator