Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfimafnf Structured version   Visualization version   GIF version

Theorem dfimafnf 29776
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
dfimafnf.1 𝑥𝐴
dfimafnf.2 𝑥𝐹
Assertion
Ref Expression
dfimafnf ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem dfimafnf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3746 . . . . . . 7 (𝐴 ⊆ dom 𝐹 → (𝑧𝐴𝑧 ∈ dom 𝐹))
2 eqcom 2778 . . . . . . . . 9 ((𝐹𝑧) = 𝑦𝑦 = (𝐹𝑧))
3 funbrfvb 6379 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) = 𝑦𝑧𝐹𝑦))
42, 3syl5bbr 274 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
54ex 397 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦)))
61, 5syl9r 78 . . . . . 6 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧𝐴 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))))
76imp31 404 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑧𝐴) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
87rexbidva 3197 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑧𝐴 𝑧𝐹𝑦))
98abbidv 2890 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦})
10 dfima2 5609 . . 3 (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦}
119, 10syl6reqr 2824 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)})
12 nfcv 2913 . . . 4 𝑧𝐴
13 dfimafnf.1 . . . 4 𝑥𝐴
14 dfimafnf.2 . . . . . 6 𝑥𝐹
15 nfcv 2913 . . . . . 6 𝑥𝑧
1614, 15nffv 6339 . . . . 5 𝑥(𝐹𝑧)
1716nfeq2 2929 . . . 4 𝑥 𝑦 = (𝐹𝑧)
18 nfv 1995 . . . 4 𝑧 𝑦 = (𝐹𝑥)
19 fveq2 6332 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2019eqeq2d 2781 . . . 4 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
2112, 13, 17, 18, 20cbvrexf 3315 . . 3 (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
2221abbii 2888 . 2 {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
2311, 22syl6eq 2821 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  {cab 2757  wnfc 2900  wrex 3062  wss 3723   class class class wbr 4786  dom cdm 5249  cima 5252  Fun wfun 6025  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039
This theorem is referenced by:  funimass4f  29777
  Copyright terms: Public domain W3C validator