MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn2 Structured version   Visualization version   GIF version

Theorem dfimafn2 6409
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6408 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
2 iunab 4718 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
31, 2syl6eqr 2812 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦})
4 df-sn 4322 . . . . 5 {(𝐹𝑥)} = {𝑦𝑦 = (𝐹𝑥)}
5 eqcom 2767 . . . . . 6 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
65abbii 2877 . . . . 5 {𝑦𝑦 = (𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
74, 6eqtri 2782 . . . 4 {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦})
98iuneq2i 4691 . 2 𝑥𝐴 {(𝐹𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦}
103, 9syl6eqr 2812 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  wss 3715  {csn 4321   ciun 4672  dom cdm 5266  cima 5269  Fun wfun 6043  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057
This theorem is referenced by:  uniiccdif  23566
  Copyright terms: Public domain W3C validator