Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp4 Structured version   Visualization version   GIF version

Theorem dfifp4 1054
 Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp4 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem dfifp4
StepHypRef Expression
1 dfifp3 1053 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
2 imor 427 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32anbi1i 733 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
41, 3bitri 264 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383  if-wif 1050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051 This theorem is referenced by:  anifp  1058  ifpan123g  38274  ifpan23  38275  ifpdfor2  38276  ifpdfor  38280  ifpim1  38284  ifpnot  38285  ifpid2  38286  ifpim2  38287  ifpnot23  38294  ifpidg  38307  ifpim123g  38316  ifpimim  38325
 Copyright terms: Public domain W3C validator