![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfif3 | Structured version Visualization version GIF version |
Description: Alternate definition of the conditional operator df-if 4120. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 4122 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
3 | biidd 252 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
4 | 3 | cbvabv 2776 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} |
5 | 2, 4 | eqtri 2673 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} |
6 | 5 | ineq2i 3844 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) |
7 | dfrab3 3935 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
8 | 6, 7 | eqtr4i 2676 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} |
9 | dfrab3 3935 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
10 | notab 3930 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜑}) | |
11 | 5 | difeq2i 3758 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑦 ∣ 𝜑}) |
12 | 10, 11 | eqtr4i 2676 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) |
13 | 12 | ineq2i 3844 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) |
14 | 9, 13 | eqtr2i 2674 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} |
15 | 8, 14 | uneq12i 3798 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) |
16 | 1, 15 | eqtr4i 2676 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 {cab 2637 {crab 2945 Vcvv 3231 ∖ cdif 3604 ∪ cun 3605 ∩ cin 3606 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-if 4120 |
This theorem is referenced by: dfif4 4134 |
Copyright terms: Public domain | W3C validator |