MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2e Structured version   Visualization version   GIF version

Theorem dfgrp2e 17388
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b 𝐵 = (Base‘𝐺)
dfgrp2.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp2e (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Distinct variable groups:   𝐵,𝑖,𝑛,𝑥   𝑖,𝐺,𝑛,𝑥   + ,𝑖,𝑛,𝑥   𝑦,𝐵,𝑧,𝑥   𝑦,𝐺,𝑧   𝑦, + ,𝑧

Proof of Theorem dfgrp2e
StepHypRef Expression
1 dfgrp2.b . . 3 𝐵 = (Base‘𝐺)
2 dfgrp2.p . . 3 + = (+g𝐺)
31, 2dfgrp2 17387 . 2 (𝐺 ∈ Grp ↔ (𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
4 ax-1 6 . . . . . . 7 (𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
5 fvprc 6152 . . . . . . . 8 𝐺 ∈ V → (Base‘𝐺) = ∅)
61eleq2i 2690 . . . . . . . . 9 (𝑛𝐵𝑛 ∈ (Base‘𝐺))
7 eleq2 2687 . . . . . . . . . 10 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) ↔ 𝑛 ∈ ∅))
8 noel 3901 . . . . . . . . . . 11 ¬ 𝑛 ∈ ∅
98pm2.21i 116 . . . . . . . . . 10 (𝑛 ∈ ∅ → 𝐺 ∈ V)
107, 9syl6bi 243 . . . . . . . . 9 ((Base‘𝐺) = ∅ → (𝑛 ∈ (Base‘𝐺) → 𝐺 ∈ V))
116, 10syl5bi 232 . . . . . . . 8 ((Base‘𝐺) = ∅ → (𝑛𝐵𝐺 ∈ V))
125, 11syl 17 . . . . . . 7 𝐺 ∈ V → (𝑛𝐵𝐺 ∈ V))
134, 12pm2.61i 176 . . . . . 6 (𝑛𝐵𝐺 ∈ V)
1413a1d 25 . . . . 5 (𝑛𝐵 → (∀𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V))
1514rexlimiv 3022 . . . 4 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → 𝐺 ∈ V)
161, 2issgrpv 17226 . . . 4 (𝐺 ∈ V → (𝐺 ∈ SGrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1715, 16syl 17 . . 3 (∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛) → (𝐺 ∈ SGrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))))
1817pm5.32ri 669 . 2 ((𝐺 ∈ SGrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)) ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
193, 18bitri 264 1 (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  Vcvv 3190  c0 3897  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  SGrpcsgrp 17223  Grpcgrp 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-riota 6576  df-ov 6618  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator