Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgcd3 Structured version   Visualization version   GIF version

Theorem dfgcd3 33500
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
StepHypRef Expression
1 gcdcl 15435 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 simplr 744 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
32nn0zd 11681 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
4 iddvds 15203 . . . . . . . 8 (𝑑 ∈ ℤ → 𝑑𝑑)
53, 4syl 17 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑𝑑)
6 simpr 471 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
7 breq1 4787 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑧𝑑𝑑𝑑))
8 breq1 4787 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑀𝑑𝑀))
9 breq1 4787 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝑧𝑁𝑑𝑁))
108, 9anbi12d 608 . . . . . . . . . 10 (𝑧 = 𝑑 → ((𝑧𝑀𝑧𝑁) ↔ (𝑑𝑀𝑑𝑁)))
117, 10bibi12d 334 . . . . . . . . 9 (𝑧 = 𝑑 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
1211rspcv 3454 . . . . . . . 8 (𝑑 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁))))
133, 6, 12sylc 65 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑑 ↔ (𝑑𝑀𝑑𝑁)))
145, 13mpbid 222 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑𝑀𝑑𝑁))
15 biimpr 210 . . . . . . . 8 ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
1615ralimi 3100 . . . . . . 7 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
176, 16syl 17 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))
18 dfgcd2 15470 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
1918adantr 466 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
20 simpr 471 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 𝑑 ∈ ℕ0)
2120nn0ge0d 11555 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → 0 ≤ 𝑑)
22213biant1d 1588 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑)) ↔ (0 ≤ 𝑑 ∧ (𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2319, 22bitr4d 271 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2423adantr 466 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (𝑑 = (𝑀 gcd 𝑁) ↔ ((𝑑𝑀𝑑𝑁) ∧ ∀𝑧 ∈ ℤ ((𝑧𝑀𝑧𝑁) → 𝑧𝑑))))
2514, 17, 24mpbir2and 684 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = (𝑀 gcd 𝑁))
2625ex 397 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → 𝑑 = (𝑀 gcd 𝑁)))
27 dvdsgcdb 15469 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧𝑀𝑧𝑁) ↔ 𝑧 ∥ (𝑀 gcd 𝑁)))
2827bicomd 213 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
29283coml 1120 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
3029ad4ant124 1178 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁)))
31 breq2 4788 . . . . . . . . . 10 (𝑑 = (𝑀 gcd 𝑁) → (𝑧𝑑𝑧 ∥ (𝑀 gcd 𝑁)))
3231bibi1d 332 . . . . . . . . 9 (𝑑 = (𝑀 gcd 𝑁) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3332ad2antlr 698 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (𝑧 ∥ (𝑀 gcd 𝑁) ↔ (𝑧𝑀𝑧𝑁))))
3430, 33mpbird 247 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3534ralrimiva 3114 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 = (𝑀 gcd 𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
3635ex 397 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3736adantr 466 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (𝑑 = (𝑀 gcd 𝑁) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
3826, 37impbid 202 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = (𝑀 gcd 𝑁)))
391, 38riota5 6779 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = (𝑀 gcd 𝑁))
4039eqcomd 2776 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060   class class class wbr 4784  crio 6752  (class class class)co 6792  0cc0 10137  cle 10276  0cn0 11493  cz 11578  cdvds 15188   gcd cgcd 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator