MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Structured version   Visualization version   GIF version

Theorem dffun6 5865
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2767 . 2 𝑥𝐹
2 nfcv 2767 . 2 𝑦𝐹
31, 2dffun6f 5864 1 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wal 1478  ∃*wmo 2475   class class class wbr 4618  Rel wrel 5084  Fun wfun 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-cnv 5087  df-co 5088  df-fun 5852
This theorem is referenced by:  funmo  5866  dffun7  5876  fununfun  5894  funcnvsn  5896  funcnv2  5917  svrelfun  5921  fnres  5967  nfunsn  6183  dff3  6329  brdom3  9295  nqerf  9697  shftfn  13742  cnextfun  21773  perfdvf  23568  taylf  24014
  Copyright terms: Public domain W3C validator