![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffun5 | Structured version Visualization version GIF version |
Description: Alternate definition of function. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dffun5 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3 6042 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) | |
2 | df-br 4787 | . . . . . . 7 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 2 | imbi1i 338 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
4 | 3 | albii 1895 | . . . . 5 ⊢ (∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
5 | 4 | exbii 1924 | . . . 4 ⊢ (∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
6 | 5 | albii 1895 | . . 3 ⊢ (∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧) ↔ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧)) |
7 | 6 | anbi2i 609 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
8 | 1, 7 | bitri 264 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 ∃wex 1852 ∈ wcel 2145 〈cop 4322 class class class wbr 4786 Rel wrel 5254 Fun wfun 6025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-id 5157 df-cnv 5257 df-co 5258 df-fun 6033 |
This theorem is referenced by: funimaexg 6115 fvn0ssdmfun 6493 uzrdgfni 12965 dffrege115 38798 |
Copyright terms: Public domain | W3C validator |