Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege99 Structured version   Visualization version   GIF version

Theorem dffrege99 38775
Description: If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.)
Hypothesis
Ref Expression
frege99.z 𝑍𝑈
Assertion
Ref Expression
dffrege99 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)

Proof of Theorem dffrege99
StepHypRef Expression
1 brun 4835 . 2 (𝑋((t+‘𝑅) ∪ I )𝑍 ↔ (𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
2 df-or 827 . 2 ((𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍))
3 frege99.z . . . . . 6 𝑍𝑈
43elexi 3362 . . . . 5 𝑍 ∈ V
54ideq 5413 . . . 4 (𝑋 I 𝑍𝑋 = 𝑍)
6 eqcom 2777 . . . 4 (𝑋 = 𝑍𝑍 = 𝑋)
75, 6bitri 264 . . 3 (𝑋 I 𝑍𝑍 = 𝑋)
87imbi2i 325 . 2 ((¬ 𝑋(t+‘𝑅)𝑍𝑋 I 𝑍) ↔ (¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋))
91, 2, 83bitrri 287 1 ((¬ 𝑋(t+‘𝑅)𝑍𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 826   = wceq 1630  wcel 2144  cun 3719   class class class wbr 4784   I cid 5156  cfv 6031  t+ctcl 13933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256
This theorem is referenced by:  frege100  38776  frege105  38781
  Copyright terms: Public domain W3C validator