![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege76 | Structured version Visualization version GIF version |
Description: If from the two
propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
Ref | Expression |
---|---|
frege76.b | ⊢ 𝐵 ∈ 𝑈 |
frege76.e | ⊢ 𝐸 ∈ 𝑉 |
frege76.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
dffrege76 | ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege76.b | . . 3 ⊢ 𝐵 ∈ 𝑈 | |
2 | frege76.e | . . 3 ⊢ 𝐸 ∈ 𝑉 | |
3 | frege76.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
4 | brtrclfv2 38336 | . . 3 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐸 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓})) | |
5 | 1, 2, 3, 4 | mp3an 1464 | . 2 ⊢ (𝐵(t+‘𝑅)𝐸 ↔ 𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓}) |
6 | 2 | elexi 3244 | . . 3 ⊢ 𝐸 ∈ V |
7 | 6 | elintab 4519 | . 2 ⊢ (𝐸 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓)) |
8 | imaundi 5580 | . . . . . . . . 9 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ {𝐵}) ∪ (𝑅 “ 𝑓)) | |
9 | 8 | equncomi 3792 | . . . . . . . 8 ⊢ (𝑅 “ ({𝐵} ∪ 𝑓)) = ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) |
10 | 9 | sseq1i 3662 | . . . . . . 7 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) |
11 | unss 3820 | . . . . . . 7 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ ((𝑅 “ 𝑓) ∪ (𝑅 “ {𝐵})) ⊆ 𝑓) | |
12 | 10, 11 | bitr4i 267 | . . . . . 6 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓)) |
13 | df-he 38384 | . . . . . . . 8 ⊢ (𝑅 hereditary 𝑓 ↔ (𝑅 “ 𝑓) ⊆ 𝑓) | |
14 | 13 | bicomi 214 | . . . . . . 7 ⊢ ((𝑅 “ 𝑓) ⊆ 𝑓 ↔ 𝑅 hereditary 𝑓) |
15 | dfss2 3624 | . . . . . . . 8 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓)) | |
16 | 1 | elexi 3244 | . . . . . . . . . . . 12 ⊢ 𝐵 ∈ V |
17 | vex 3234 | . . . . . . . . . . . 12 ⊢ 𝑎 ∈ V | |
18 | 16, 17 | elimasn 5525 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) |
19 | df-br 4686 | . . . . . . . . . . 11 ⊢ (𝐵𝑅𝑎 ↔ 〈𝐵, 𝑎〉 ∈ 𝑅) | |
20 | 18, 19 | bitr4i 267 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝑅 “ {𝐵}) ↔ 𝐵𝑅𝑎) |
21 | 20 | imbi1i 338 | . . . . . . . . 9 ⊢ ((𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ (𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
22 | 21 | albii 1787 | . . . . . . . 8 ⊢ (∀𝑎(𝑎 ∈ (𝑅 “ {𝐵}) → 𝑎 ∈ 𝑓) ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
23 | 15, 22 | bitri 264 | . . . . . . 7 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝑓 ↔ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) |
24 | 14, 23 | anbi12i 733 | . . . . . 6 ⊢ (((𝑅 “ 𝑓) ⊆ 𝑓 ∧ (𝑅 “ {𝐵}) ⊆ 𝑓) ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
25 | 12, 24 | bitri 264 | . . . . 5 ⊢ ((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 ↔ (𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓))) |
26 | 25 | imbi1i 338 | . . . 4 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓)) |
27 | impexp 461 | . . . 4 ⊢ (((𝑅 hereditary 𝑓 ∧ ∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓)) → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) | |
28 | 26, 27 | bitri 264 | . . 3 ⊢ (((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ (𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
29 | 28 | albii 1787 | . 2 ⊢ (∀𝑓((𝑅 “ ({𝐵} ∪ 𝑓)) ⊆ 𝑓 → 𝐸 ∈ 𝑓) ↔ ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓))) |
30 | 5, 7, 29 | 3bitrri 287 | 1 ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∈ wcel 2030 {cab 2637 ∪ cun 3605 ⊆ wss 3607 {csn 4210 〈cop 4216 ∩ cint 4507 class class class wbr 4685 “ cima 5146 ‘cfv 5926 t+ctcl 13770 hereditary whe 38383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-trcl 13772 df-relexp 13805 df-he 38384 |
This theorem is referenced by: frege77 38551 frege89 38563 |
Copyright terms: Public domain | W3C validator |