MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Structured version   Visualization version   GIF version

Theorem dffr3 5644
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5219 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
2 vex 3331 . . . . . . . . 9 𝑦 ∈ V
3 iniseg 5642 . . . . . . . . 9 (𝑦 ∈ V → (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦})
42, 3ax-mp 5 . . . . . . . 8 (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦}
54ineq2i 3942 . . . . . . 7 (𝑥 ∩ (𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
6 dfrab3 4033 . . . . . . 7 {𝑧𝑥𝑧𝑅𝑦} = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
75, 6eqtr4i 2773 . . . . . 6 (𝑥 ∩ (𝑅 “ {𝑦})) = {𝑧𝑥𝑧𝑅𝑦}
87eqeq1i 2753 . . . . 5 ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ {𝑧𝑥𝑧𝑅𝑦} = ∅)
98rexbii 3167 . . . 4 (∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅)
109imbi2i 325 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
1110albii 1884 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
121, 11bitr4i 267 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1618   = wceq 1620  wcel 2127  {cab 2734  wne 2920  wrex 3039  {crab 3042  Vcvv 3328  cin 3702  wss 3703  c0 4046  {csn 4309   class class class wbr 4792   Fr wfr 5210  ccnv 5253  cima 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-br 4793  df-opab 4853  df-fr 5213  df-xp 5260  df-cnv 5262  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267
This theorem is referenced by:  dffr4  5845  isofrlem  6741
  Copyright terms: Public domain W3C validator