![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr3 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dffr3 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5219 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | vex 3331 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
3 | iniseg 5642 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦}) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦} |
5 | 4 | ineq2i 3942 | . . . . . . 7 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) |
6 | dfrab3 4033 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) | |
7 | 5, 6 | eqtr4i 2773 | . . . . . 6 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} |
8 | 7 | eqeq1i 2753 | . . . . 5 ⊢ ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
9 | 8 | rexbii 3167 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
10 | 9 | imbi2i 325 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
11 | 10 | albii 1884 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
12 | 1, 11 | bitr4i 267 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1618 = wceq 1620 ∈ wcel 2127 {cab 2734 ≠ wne 2920 ∃wrex 3039 {crab 3042 Vcvv 3328 ∩ cin 3702 ⊆ wss 3703 ∅c0 4046 {csn 4309 class class class wbr 4792 Fr wfr 5210 ◡ccnv 5253 “ cima 5257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-br 4793 df-opab 4853 df-fr 5213 df-xp 5260 df-cnv 5262 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 |
This theorem is referenced by: dffr4 5845 isofrlem 6741 |
Copyright terms: Public domain | W3C validator |