![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn4 | Structured version Visualization version GIF version |
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
dffn4 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
2 | 1 | biantru 525 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) |
3 | df-fo 5932 | . 2 ⊢ (𝐹:𝐴–onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ran crn 5144 Fn wfn 5921 –onto→wfo 5924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 df-fo 5932 |
This theorem is referenced by: funforn 6160 ffoss 7169 tposf2 7421 mapsn 7941 rneqdmfinf1o 8283 fidomdm 8284 pwfilem 8301 indexfi 8315 intrnfi 8363 fifo 8379 ixpiunwdom 8537 infpwfien 8923 infmap2 9078 cfflb 9119 cfslb2n 9128 ttukeylem6 9374 dmct 9384 fnrndomg 9396 rankcf 9637 tskuni 9643 tskurn 9649 fseqsupcl 12816 vdwlem6 15737 0ram2 15772 0ramcl 15774 quslem 16250 gsumval3 18354 gsumzoppg 18390 mplsubrglem 19487 rncmp 21247 cmpsub 21251 tgcmp 21252 hauscmplem 21257 conncn 21277 2ndcctbss 21306 2ndcomap 21309 2ndcsep 21310 comppfsc 21383 ptcnplem 21472 txtube 21491 txcmplem1 21492 tx1stc 21501 tx2ndc 21502 qtopid 21556 qtopcmplem 21558 qtopkgen 21561 kqtopon 21578 kqopn 21585 kqcld 21586 qtopf1 21667 rnelfm 21804 fmfnfmlem2 21806 fmfnfm 21809 alexsubALT 21902 ptcmplem2 21904 tmdgsum2 21947 tsmsxplem1 22003 met1stc 22373 met2ndci 22374 uniiccdif 23392 dyadmbl 23414 mbfimaopnlem 23467 i1fadd 23507 i1fmul 23508 itg1addlem4 23511 i1fmulc 23515 mbfi1fseqlem4 23530 limciun 23703 aannenlem3 24130 efabl 24341 logccv 24454 locfinreflem 30035 mvrsfpw 31529 msrfo 31569 mtyf 31575 itg2addnclem2 33592 istotbnd3 33700 sstotbnd 33704 prdsbnd 33722 cntotbnd 33725 heiborlem1 33740 heibor 33750 dihintcl 36950 mapsnd 39702 |
Copyright terms: Public domain | W3C validator |