![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn3 | Structured version Visualization version GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3757 | . . 3 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
2 | 1 | biantru 527 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) |
3 | df-f 6045 | . 2 ⊢ (𝐹:𝐴⟶ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ran 𝐹)) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ⊆ wss 3707 ran crn 5259 Fn wfn 6036 ⟶wf 6037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-in 3714 df-ss 3721 df-f 6045 |
This theorem is referenced by: ffrn 6208 fsn2 6558 fo2ndf 7444 fndmfisuppfi 8444 fndmfifsupp 8445 fin23lem17 9344 fin23lem32 9350 fnct 9543 yoniso 17118 1stckgen 21551 ovolicc2 23482 itg1val2 23642 i1fadd 23653 i1fmul 23654 itg1addlem4 23657 i1fmulc 23661 clwlkclwwlklem2 27115 foresf1o 29642 fcoinver 29717 ofpreima2 29767 locfinreflem 30208 pl1cn 30302 poimirlem29 33743 poimirlem30 33744 itg2addnclem2 33767 mapdcl 37436 wessf1ornlem 39862 unirnmap 39891 fsneqrn 39894 icccncfext 40595 stoweidlem29 40741 stoweidlem31 40743 stoweidlem59 40771 subsaliuncllem 41070 meadjiunlem 41177 |
Copyright terms: Public domain | W3C validator |