![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffn2 | Structured version Visualization version GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3658 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 525 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 5930 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 Vcvv 3231 ⊆ wss 3607 ran crn 5144 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 df-in 3614 df-ss 3621 df-f 5930 |
This theorem is referenced by: f1cnvcnv 6147 fcoconst 6441 fnressn 6465 fndifnfp 6483 1stcof 7240 2ndcof 7241 fnmpt2 7283 tposfn 7426 tz7.48lem 7581 seqomlem2 7591 mptelixpg 7987 r111 8676 smobeth 9446 inar1 9635 imasvscafn 16244 fucidcl 16672 fucsect 16679 curfcl 16919 curf2ndf 16934 dsmmbas2 20129 frlmsslsp 20183 frlmup1 20185 prdstopn 21479 prdstps 21480 ist0-4 21580 ptuncnv 21658 xpstopnlem2 21662 prdstgpd 21975 prdsxmslem2 22381 curry2ima 29614 fnchoice 39502 fsneqrn 39717 stoweidlem35 40570 |
Copyright terms: Public domain | W3C validator |