MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffin1-5 Structured version   Visualization version   GIF version

Theorem dffin1-5 9416
Description: Compact quantifier-free version of the standard definition df-fin 8117. (Contributed by Stefan O'Rear, 6-Jan-2015.)
Assertion
Ref Expression
dffin1-5 Fin = ( ≈ “ ω)

Proof of Theorem dffin1-5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensymb 8161 . . . 4 (𝑥𝑦𝑦𝑥)
21rexbii 3189 . . 3 (∃𝑦 ∈ ω 𝑥𝑦 ↔ ∃𝑦 ∈ ω 𝑦𝑥)
32abbii 2888 . 2 {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦} = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦𝑥}
4 df-fin 8117 . 2 Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
5 dfima2 5608 . 2 ( ≈ “ ω) = {𝑥 ∣ ∃𝑦 ∈ ω 𝑦𝑥}
63, 4, 53eqtr4i 2803 1 Fin = ( ≈ “ ω)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  {cab 2757  wrex 3062   class class class wbr 4787  cima 5253  ωcom 7216  cen 8110  Fincfn 8113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-er 7900  df-en 8114  df-fin 8117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator