![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff1o5 | Structured version Visualization version GIF version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o5 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 6056 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) | |
2 | f1f 6262 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | biantrurd 530 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵))) |
4 | dffo2 6281 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) | |
5 | 3, 4 | syl6rbbr 279 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹:𝐴–onto→𝐵 ↔ ran 𝐹 = 𝐵)) |
6 | 5 | pm5.32i 672 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵) ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
7 | 1, 6 | bitri 264 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ran crn 5267 ⟶wf 6045 –1-1→wf1 6046 –onto→wfo 6047 –1-1-onto→wf1o 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 |
This theorem is referenced by: f1orescnv 6314 domdifsn 8210 sucdom2 8323 ackbij1 9272 ackbij2 9277 fin4en1 9343 om2uzf1oi 12966 s4f1o 13883 fvcosymgeq 18069 indlcim 20401 2lgslem1b 25337 ausgrusgrb 26280 usgrexmpledg 26374 cdleme50f1o 36354 diaf1oN 36939 pwssplit4 38179 meadjiunlem 41203 |
Copyright terms: Public domain | W3C validator |