![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff1o3 | Structured version Visualization version GIF version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o3 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1068 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) | |
2 | dff1o2 6180 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
3 | df-fo 5932 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | 3 | anbi1i 731 | . 2 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) ∧ Fun ◡𝐹)) |
5 | 1, 2, 4 | 3bitr4i 292 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ◡ccnv 5142 ran crn 5144 Fun wfun 5920 Fn wfn 5921 –onto→wfo 5924 –1-1-onto→wf1o 5925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 |
This theorem is referenced by: f1ofo 6182 resdif 6195 f1opw 6931 f11o 7170 1stconst 7310 2ndconst 7311 curry1 7314 curry2 7317 f1o2ndf1 7330 ssdomg 8043 phplem4 8183 php3 8187 f1opwfi 8311 cantnfp1lem3 8615 fpwwe2lem6 9495 canthp1lem2 9513 odf1o2 18034 dprdf1o 18477 relogf1o 24358 iseupthf1o 27180 padct 29625 ballotlemfrc 30716 poimirlem1 33540 poimirlem2 33541 poimirlem3 33542 poimirlem4 33543 poimirlem6 33545 poimirlem7 33546 poimirlem9 33548 poimirlem11 33550 poimirlem12 33551 poimirlem13 33552 poimirlem14 33553 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 poimirlem23 33562 poimirlem24 33563 poimirlem25 33564 poimirlem29 33568 poimirlem31 33570 ntrneifv2 38695 |
Copyright terms: Public domain | W3C validator |