![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff14b | Structured version Visualization version GIF version |
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
dff14b | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff14a 6678 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) | |
2 | necom 2973 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ 𝑦 ≠ 𝑥) | |
3 | 2 | imbi1i 338 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
4 | 3 | ralbii 3106 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
5 | raldifsnb 4459 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) | |
6 | 4, 5 | bitri 264 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
7 | 6 | ralbii 3106 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
8 | 7 | anbi2i 732 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
9 | 1, 8 | bitri 264 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ≠ wne 2920 ∀wral 3038 ∖ cdif 3700 {csn 4309 ⟶wf 6033 –1-1→wf1 6034 ‘cfv 6037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fv 6045 |
This theorem is referenced by: f12dfv 6680 f13dfv 6681 |
Copyright terms: Public domain | W3C validator |