MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14b Structured version   Visualization version   GIF version

Theorem dff14b 6679
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14b (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14b
StepHypRef Expression
1 dff14a 6678 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
2 necom 2973 . . . . . . 7 (𝑥𝑦𝑦𝑥)
32imbi1i 338 . . . . . 6 ((𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
43ralbii 3106 . . . . 5 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
5 raldifsnb 4459 . . . . 5 (∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
64, 5bitri 264 . . . 4 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
76ralbii 3106 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
87anbi2i 732 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
91, 8bitri 264 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wne 2920  wral 3038  cdif 3700  {csn 4309  wf 6033  1-1wf1 6034  cfv 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fv 6045
This theorem is referenced by:  f12dfv  6680  f13dfv  6681
  Copyright terms: Public domain W3C validator