Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfepfr Structured version   Visualization version   GIF version

Theorem dfepfr 5234
 Description: An alternate way of saying that the epsilon relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfepfr ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfepfr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5214 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅))
2 epel 5165 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
32rabbii 3334 . . . . . . 7 {𝑧𝑥𝑧 E 𝑦} = {𝑧𝑥𝑧𝑦}
4 dfin5 3729 . . . . . . 7 (𝑥𝑦) = {𝑧𝑥𝑧𝑦}
53, 4eqtr4i 2795 . . . . . 6 {𝑧𝑥𝑧 E 𝑦} = (𝑥𝑦)
65eqeq1i 2775 . . . . 5 ({𝑧𝑥𝑧 E 𝑦} = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3188 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
87imbi2i 325 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
98albii 1894 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
101, 9bitri 264 1 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382  ∀wal 1628   = wceq 1630   ≠ wne 2942  ∃wrex 3061  {crab 3064   ∩ cin 3720   ⊆ wss 3721  ∅c0 4061   class class class wbr 4784   E cep 5161   Fr wfr 5205 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-eprel 5162  df-fr 5208 This theorem is referenced by:  onfr  5906  zfregfr  8664  onfrALTlem3  39278  onfrALT  39283  onfrALTlem3VD  39639  onfrALTVD  39643
 Copyright terms: Public domain W3C validator