![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8116 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | uneq2i 3915 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
3 | uncom 3908 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
4 | enssdom 8138 | . . 3 ⊢ ≈ ⊆ ≼ | |
5 | undif 4192 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
6 | 4, 5 | mpbi 220 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
7 | 2, 3, 6 | 3eqtr3ri 2802 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∖ cdif 3720 ∪ cun 3721 ⊆ wss 3723 ≈ cen 8110 ≼ cdom 8111 ≺ csdm 8112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-opab 4848 df-xp 5256 df-rel 5257 df-f1o 6037 df-en 8114 df-dom 8115 df-sdom 8116 |
This theorem is referenced by: brdom2 8143 |
Copyright terms: Public domain | W3C validator |