![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdm6 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by Peter Mazsa, 2-Mar-2018.) |
Ref | Expression |
---|---|
dfdm6 | ⊢ dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecdmn0 7959 | . 2 ⊢ (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅) | |
2 | 1 | abbi2i 2877 | 1 ⊢ dom 𝑅 = {𝑥 ∣ [𝑥]𝑅 ≠ ∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 {cab 2747 ≠ wne 2933 ∅c0 4059 dom cdm 5267 [cec 7912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-xp 5273 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-ec 7916 |
This theorem is referenced by: dfrn6 34415 |
Copyright terms: Public domain | W3C validator |