Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm5 Structured version   Visualization version   GIF version

Theorem dfdm5 31952
Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfdm5 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)

Proof of Theorem dfdm5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2179 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2 opex 5069 . . . . . . . 8 𝑧, 𝑦⟩ ∈ V
3 breq1 4795 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝1st 𝑥 ↔ ⟨𝑧, 𝑦⟩1st 𝑥))
4 eleq1 2815 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
53, 4anbi12d 749 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
6 vex 3331 . . . . . . . . . . . 12 𝑧 ∈ V
7 vex 3331 . . . . . . . . . . . 12 𝑦 ∈ V
86, 7br1steq 31948 . . . . . . . . . . 11 (⟨𝑧, 𝑦⟩1st 𝑥𝑥 = 𝑧)
9 equcom 2088 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
108, 9bitri 264 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩1st 𝑥𝑧 = 𝑥)
1110anbi1i 733 . . . . . . . . 9 ((⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
125, 11syl6bb 276 . . . . . . . 8 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
132, 12ceqsexv 3370 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
1413exbii 1911 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
15 excom 2179 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
16 vex 3331 . . . . . . 7 𝑥 ∈ V
17 opeq1 4541 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
1817eleq1d 2812 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1916, 18ceqsexv 3370 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2014, 15, 193bitr3ri 291 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2120exbii 1911 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
22 ancom 465 . . . . . 6 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ (𝑝(1st ↾ (V × V))𝑥𝑝𝐴))
23 anass 684 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2416brres 5548 . . . . . . . . 9 (𝑝(1st ↾ (V × V))𝑥 ↔ (𝑝1st 𝑥𝑝 ∈ (V × V)))
25 ancom 465 . . . . . . . . . 10 ((𝑝1st 𝑥𝑝 ∈ (V × V)) ↔ (𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥))
26 elvv 5322 . . . . . . . . . . . 12 (𝑝 ∈ (V × V) ↔ ∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩)
27 excom 2179 . . . . . . . . . . . 12 (∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩ ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2826, 27bitri 264 . . . . . . . . . . 11 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2928anbi1i 733 . . . . . . . . . 10 ((𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3025, 29bitri 264 . . . . . . . . 9 ((𝑝1st 𝑥𝑝 ∈ (V × V)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3124, 30bitri 264 . . . . . . . 8 (𝑝(1st ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3231anbi1i 733 . . . . . . 7 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴))
33 19.41vv 2015 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3423, 32, 333bitr4i 292 . . . . . 6 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3522, 34bitri 264 . . . . 5 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3635exbii 1911 . . . 4 (∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
371, 21, 363bitr4i 292 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
3816eldm2 5465 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3916elima2 5618 . . 3 (𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
4037, 38, 393bitr4i 292 . 2 (𝑥 ∈ dom 𝐴𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴))
4140eqriv 2745 1 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1620  wex 1841  wcel 2127  Vcvv 3328  cop 4315   class class class wbr 4792   × cxp 5252  dom cdm 5254  cres 5256  cima 5257  1st c1st 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fo 6043  df-fv 6045  df-1st 7321
This theorem is referenced by:  brdomain  32317
  Copyright terms: Public domain W3C validator