![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3343 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 3343 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5460 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1923 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2877 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 5466 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 5276 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2793 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∃wex 1853 {cab 2746 class class class wbr 4804 ◡ccnv 5265 dom cdm 5266 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: dmcnvcnv 5503 rncnvcnv 5504 rncoeq 5544 cnvimass 5643 cnvimarndm 5644 dminxp 5732 cnvsn0 5761 rnsnopg 5773 dmmpt 5791 dmco 5804 cores2 5809 cnvssrndm 5818 unidmrn 5826 dfdm2 5828 funimacnv 6131 foimacnv 6315 funcocnv2 6322 fimacnv 6510 f1opw2 7053 cnvexg 7277 tz7.48-3 7708 fopwdom 8233 sbthlem4 8238 fodomr 8276 f1opwfi 8435 zorn2lem4 9513 trclublem 13935 relexpcnv 13974 unbenlem 15814 gsumpropd2lem 17474 pjdm 20253 paste 21300 hmeores 21776 icchmeo 22941 fcnvgreu 29781 ffsrn 29813 gsummpt2co 30089 coinfliprv 30853 itg2addnclem2 33775 rncnv 34394 lnmlmic 38160 dmnonrel 38398 cnvrcl0 38434 conrel1d 38457 |
Copyright terms: Public domain | W3C validator |