![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm2 | Structured version Visualization version GIF version |
Description: Alternate definition of domain df-dm 5153 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
Ref | Expression |
---|---|
dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5340 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
2 | cocnvcnv2 5685 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
3 | 1, 2 | eqtri 2673 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
4 | 3 | unieqi 4477 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
5 | 4 | unieqi 4477 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
6 | unidmrn 5703 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
7 | 5, 6 | eqtr3i 2675 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
8 | df-rn 5154 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
9 | 8 | eqcomi 2660 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
10 | dmcoeq 5420 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
12 | rncoeq 5421 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
14 | dfdm4 5348 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
15 | 13, 14 | eqtr4i 2676 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
16 | 11, 15 | uneq12i 3798 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
17 | unidm 3789 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
18 | 7, 16, 17 | 3eqtrri 2678 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∪ cun 3605 ∪ cuni 4468 ◡ccnv 5142 dom cdm 5143 ran crn 5144 ∘ ccom 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |