Proof of Theorem dfconngr1
Step | Hyp | Ref
| Expression |
1 | | df-conngr 27339 |
. 2
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
2 | | difsnid 4486 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (Vtx‘𝑔) → (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘}) = (Vtx‘𝑔)) |
3 | 2 | eqcomd 2766 |
. . . . . . . . 9
⊢ (𝑘 ∈ (Vtx‘𝑔) → (Vtx‘𝑔) = (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})) |
4 | 3 | raleqdv 3283 |
. . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (((Vtx‘𝑔) ∖ {𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
5 | | ralunb 3937 |
. . . . . . . 8
⊢
(∀𝑛 ∈
(((Vtx‘𝑔) ∖
{𝑘}) ∪ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
6 | 4, 5 | syl6bb 276 |
. . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) |
7 | | eqid 2760 |
. . . . . . . . . 10
⊢
(Vtx‘𝑔) =
(Vtx‘𝑔) |
8 | 7 | 0pthonv 27281 |
. . . . . . . . 9
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝) |
9 | | oveq2 6821 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘𝑔)𝑘)) |
10 | 9 | breqd 4815 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
11 | 10 | 2exbidv 2001 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
12 | 11 | ralsng 4362 |
. . . . . . . . 9
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑘)𝑝)) |
13 | 8, 12 | mpbird 247 |
. . . . . . . 8
⊢ (𝑘 ∈ (Vtx‘𝑔) → ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
14 | 13 | biantrud 529 |
. . . . . . 7
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ∧ ∀𝑛 ∈ {𝑘}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) |
15 | 6, 14 | bitr4d 271 |
. . . . . 6
⊢ (𝑘 ∈ (Vtx‘𝑔) → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
16 | 15 | ralbiia 3117 |
. . . . 5
⊢
(∀𝑘 ∈
(Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
17 | | fvex 6362 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
18 | | raleq 3277 |
. . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
19 | 18 | raleqbi1dv 3285 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
20 | | difeq1 3864 |
. . . . . . . . 9
⊢ (𝑣 = (Vtx‘𝑔) → (𝑣 ∖ {𝑘}) = ((Vtx‘𝑔) ∖ {𝑘})) |
21 | 20 | raleqdv 3283 |
. . . . . . . 8
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
22 | 21 | raleqbi1dv 3285 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
23 | 19, 22 | bibi12d 334 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → ((∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))) |
24 | 17, 23 | sbcie 3611 |
. . . . 5
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) ↔ (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
25 | 16, 24 | mpbir 221 |
. . . 4
⊢
[(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
26 | | sbcbi1 3624 |
. . . 4
⊢
([(Vtx‘𝑔) / 𝑣](∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) → ([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
27 | 25, 26 | ax-mp 5 |
. . 3
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
28 | 27 | abbii 2877 |
. 2
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
29 | 1, 28 | eqtri 2782 |
1
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ (𝑣 ∖ {𝑘})∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |