![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcnv2 | Structured version Visualization version GIF version |
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
Ref | Expression |
---|---|
dfcnv2 | ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5538 | . 2 ⊢ Rel ◡𝑅 | |
2 | relxp 5160 | . . . 4 ⊢ Rel ({𝑥} × (◡𝑅 “ {𝑥})) | |
3 | 2 | rgenw 2953 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥})) |
4 | reliun 5272 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × (◡𝑅 “ {𝑥}))) | |
5 | 3, 4 | mpbir 221 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) |
6 | vex 3234 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
7 | vex 3234 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | opeldm 5360 | . . . . . . . 8 ⊢ (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ dom ◡𝑅) |
9 | df-rn 5154 | . . . . . . . 8 ⊢ ran 𝑅 = dom ◡𝑅 | |
10 | 8, 9 | syl6eleqr 2741 | . . . . . . 7 ⊢ (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ ran 𝑅) |
11 | ssel2 3631 | . . . . . . 7 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 𝑧 ∈ ran 𝑅) → 𝑧 ∈ 𝐴) | |
12 | 10, 11 | sylan2 490 | . . . . . 6 ⊢ ((ran 𝑅 ⊆ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅) → 𝑧 ∈ 𝐴) |
13 | 12 | ex 449 | . . . . 5 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 → 𝑧 ∈ 𝐴)) |
14 | 13 | pm4.71rd 668 | . . . 4 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅))) |
15 | 6, 7 | elimasn 5525 | . . . . 5 ⊢ (𝑦 ∈ (◡𝑅 “ {𝑧}) ↔ 〈𝑧, 𝑦〉 ∈ ◡𝑅) |
16 | 15 | anbi2i 730 | . . . 4 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})) ↔ (𝑧 ∈ 𝐴 ∧ 〈𝑧, 𝑦〉 ∈ ◡𝑅)) |
17 | 14, 16 | syl6bbr 278 | . . 3 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧})))) |
18 | sneq 4220 | . . . . 5 ⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) | |
19 | 18 | imaeq2d 5501 | . . . 4 ⊢ (𝑥 = 𝑧 → (◡𝑅 “ {𝑥}) = (◡𝑅 “ {𝑧})) |
20 | 19 | opeliunxp2 5293 | . . 3 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ (◡𝑅 “ {𝑧}))) |
21 | 17, 20 | syl6bbr 278 | . 2 ⊢ (ran 𝑅 ⊆ 𝐴 → (〈𝑧, 𝑦〉 ∈ ◡𝑅 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥})))) |
22 | 1, 5, 21 | eqrelrdv 5250 | 1 ⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 {csn 4210 〈cop 4216 ∪ ciun 4552 × cxp 5141 ◡ccnv 5142 dom cdm 5143 ran crn 5144 “ cima 5146 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-iun 4554 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 |
This theorem is referenced by: gsummpt2co 29908 |
Copyright terms: Public domain | W3C validator |