![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcleqf | Structured version Visualization version GIF version |
Description: Equality connective between classes. Same as dfcleq 2765, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
dfcleqf.1 | ⊢ Ⅎ𝑥𝐴 |
dfcleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
dfcleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleqf.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | dfcleqf.2 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | cleqf 2939 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1629 = wceq 1631 ∈ wcel 2145 Ⅎwnfc 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-cleq 2764 df-clel 2767 df-nfc 2902 |
This theorem is referenced by: ssmapsn 39925 infnsuprnmpt 39980 preimagelt 41429 preimalegt 41430 pimrecltpos 41436 pimrecltneg 41450 smfaddlem1 41488 smflimsuplem7 41549 |
Copyright terms: Public domain | W3C validator |